Click to edit Master title style

QARTOD in Practice

Presented by Luke Campbell



Lessons Learned

@ j(@]0 | EYES ON THE OCEAN"



Lessons Learned

e QARTOD is running in real-time for the Chesapeake
Bay Interpretive Buoy System

e Some degree of test coverage for all scientfific
parameters

e Stfrong coverage for:
e Currents
e Temperature & Salinity
e Dissolved Oxygen



Lessons Learned

e Configuring Test Constraints is not trivial:
e Consistent Units between configuration and data
e fime-varying parameters
 data model schema
e How are deployments freated?
e Maintenance vs recovered vs telemetered

e How to deal with missing values
e Types of missing data



The CBIBS Solution




The CBIBS Solution

e All of our observation data is stored in a PostGIS
database.




The CBIBS Solution

e We run all QC tests on all recent observations every
hour, or more frequent (schedule is dependent on
which platform)

* We use google docs to configure QC parameters for
all stations and parameters:

e Station ID
e Parameter Name
e Units

e configuration variable (min, max, rate of change,
etfc.)



The CBIBS Solution

e Test runs overlap

e We do infrequent manual historical QC runs if we get
delayed data or make corrections to a process.

e For example, we identified a bug in our processing
of salinity, after regenerating all of the historical
salinity values, we re-ran QC for all historical salinity
observations

* Missing values are only identified in the cases for
instrument failures

e All QC default to 2 for "Not Evaluated" on initialization



The CBIBS Solution

More on the DMAC side:

e We expose interfaces into the database for data
QCCess

e THREDDS
e Public API

* APl shows only data that are not marked as 3 or
4 (suspect or bad)



The CBIBS Solution

It works!

Water Temperature (deg_C)

28
—— Annfapolis CB|BS Buoy - Water Tefnperature
mmm Flagned Datal

%
2

Annapolis CBIBS Buoy - Water Temperature

Time Observation ga_code Flat Line Test

2013-06-01 23:50:00+00:00 148 1 1
2013-06-02 00:00:00+00:00 198 1 1
2013-06-02 00:10:00+00:00 198 1 1
2013-06-02 00:20:00+00:00 198 3 3

10 @IOOS | EYES ON THE OCEAN



QARTOD and netCDF




QARTOD and netCDF

CF provides guidance for storing flags in netCDF files in
§3.5.

The attributes flag values, flag masks and

flag _meanings are infended to make variables that
contain flag values self describing. Status codes and
Boolean (binary) condition flags may be expressed
with different combinations of flag values and
flag_masks aftfribute definifions.

12 @IOOS[ EEEEEEEEEEEEEE



QARTOD and netCDF

* Flags as encoded masks
* Flags as values

e Why we went with values

e Drawbacks
e Adds several variables to every dataset
* Pros
e Clear
 Self-describing
e Doesn't require additional programming to use
* Bit twiddling sucks & OxO0F8300

13 @IOOS[ EEEEEEEEEEEEEE



QARTOD and netCDF

float sea_water_salinity(time=446);
:_Fillvalue = -9999.8f; // float

runits = "1";

:standard_name = "sea_water_salinity";

:long_name = "Sea Water Salinity";

:comment = “The unit of salinity is PSU, which is dimensionless. The units attribute should be given as le=3 or 0.801 i.e. parts per thousand if salinity is in PSU.'
rcoordinates = “time latitude longitude depth";

:source = “Observational data from a buoy";

rplatform = "platform”;

rcell_metheods = "time: point depth: point";

:valid_min = 0.887; // float

:valid_max = 29.8f; // float

rancillary_variables = “sea_water_salinity_flatline_qc sea_water_salinity_gap_qc sea_water_salinity_range_gc sea_water_salinity_gradient_gc sea_water_salinity_spike_

byte sea_water_salinity_qgc(time=4486);

:_Unsigned = “true";

:long_name = "Sea Water Salinity Primary QC";
:comment = “Primary QC flag";

rcoordinates = “time latitude longitude depth";
:source = “Observational data from a buoy";

rplatform = "platform”;
_FillValue = 9B; // byte
:standard_name = "sea_water_salinity status_flag";

byte sea_water_salinity_flatline_gc(time=446);

!_Unsigned = "true";

:_FillWalue = 9B; // byte

:long_name = “Sea Water Salinity Flat Line Test";
:standard_name = "sea_water_salinity status_flag";

:flag_values = 1B, 2B, 3B, 4B, 9B; // byte
:flag_meanings = "GOOD NOT_EVALUATED SUSPECT BAD MISSING";
:comment = "When some sensors and/or data collection platforms fail, the result can be a continuously repeated observation of the same value. This test compares the

:references = "http://www.lio00s.noaa.gov/qarted/welcome.html";

byte sea_water_salinity_gap_gc(time=446);

!_Unsigned = "true";

:_Fillvalue = 9B; // byte

:long_name = "Sea Water Salinity Gap Test";
:standard_name = "sea_water_salinity status_flag";

:flag_values = 1B, 2B, 3B, 4B, 9B; // byte
:flag_meanings = "GOOD NOT_EVALUATED SUSPECT BAD MISSING";
:comment = "Test determines that the most recent data point has been measured and received within the expected time window (TIM_INC) and has the correct time stamp

:references = "http://www.lo00s.noaa.gov/garted/welcome.html";

byte sea_water_salinity_range_qgc(time=446);

:_Unsigned = "true";

:_Fillvalue 9B; // byte

:long_name = "Sea Water Salinity Gross Range Test";
:standard_name = "sea_water_salinity status_flag";

:flag_values = 1B, 2B, 3B, 4B, 9B; // byte
:flag_meanings = "GOOD NOT_EVALUATED SUSPECT BAD MISSING";
:comment = "All sensors have a limited output range, and this can form the most rudimentary gross range check. No values less than a minimum value or greater tha n

:references = "http://www.lo00s.noaa.gov/garted/welcome.html";

byte sea_water_salinity_gradient_gc(time=446);

:_Unsigned = “true";

:_Fillvalue = 9B; // byte

:long_name = "Sea Water Salinity Rate of Change Test";
:standard_name = "sea_water_salinity status_flag";

:flag_values = 1B, 2B, 3B, 4B, 9B; // byte

14 @IOOS | EYES ON THE OCEAN



QARTOD and netCDF

e Further Considerations:
e To include test values in variable attributes

e QC Test Runtime

15 @IOOSI ssssssssssssss



GliderDAC




GliderDAC

Coming soon to GliderDAC is automated QC

Manual for QC of Glider Data

Challenges:

e Gradients over pressure AND time
e Accurately separating profiles (yo)

17 @IOOS[ ssssssssssssss


http://gliders.ioos.us/static/pdf/Manualf_for_QC_of_Glider_Data_05_09_16.docx
http://gliders.ioos.us/static/pdf/Manualf_for_QC_of_Glider_Data_05_09_16.docx
http://gliders.ioos.us/static/pdf/Manualf_for_QC_of_Glider_Data_05_09_16.docx

GliderDAC

Challenges specific to GliderDAC

e Preserving data provider QC
 Where to store QC alongside Provider Data

e We have a policy not to modify any
uploaded datasets directly.

e We need to combine our QC results in the
final dataset published

18 @IOOS[ EEEEEEEEEEEEEE



Community Library

@ j(@]0 | EYES ON THE OCEAN"



Community Library

The core logic of our QARTOD implementation is
available online at:

https.//qithub.com/ioos/gartod/

It would be good to see this used as the reference
Implementation to increase consistent usage across
projects and improve overall QC coverage across
users.

We're working on adding a command line tool for
this library to apply QC to local files.

20 @ 1I00S | eves on TrE ocan


https://github.com/ioos/qartod/
https://github.com/ioos/qartod/
https://github.com/ioos/qartod/

